

1

Paper Number: IAEA-CN-220-151

EPR Number (for papers with IAEA/SG authors): 697

Paper Title:

The IAEA’s Universal Instrument Token

Authors:

Ingo Naumann (1), Keith Morgan (1), Christoph Brunhuber (1), Bernie Wishard (1), Andreas Schwier (2),

Frank Thater (2)

Affiliation(s):

(1) IAEA, (2) CardContact, Germany

Address of Main Author’s affiliation:

Vienna International Centre

1400 Vienna, Austria

Email Address of Main Author:

i.naumann@iaea.org

Abstract:

The IAEA continuously seeks to improve the harmonization of security approaches across safeguards

equipment. The protection of digital safeguards data is based on several principles: a) signing of data in

measurement devices using standard public/private-key-based signature generation, b) storage of secret

keys on certified, tamper-protected cryptographic devices, and c) use of well-established cryptographic

algorithms and protocols based on global standards and internationally recognized cryptographic libraries.

This paper discusses a cryptographic token, the Universal Instrument Token (UIT), which constitutes the

core element of the overall architecture for digitally signing safeguards data. This architecture supports the

above principles and is compliant with the IAEA’s information security policies and guidelines. Another

important consideration is that the UIT must be deployed across a wide range of operating systems and

hardware architectures, necessitating the use of open-source software (OSS) for all software-related parts.

The UIT is permanently connected to the measuring device (usually via the USB port) and requires

complex hardware drivers and middleware components. Identifying OSS based, mature and ready-for-use

smart card drivers and tools that are compatible with a range of operating systems was a major challenge.

Reliable and well-established cryptographic libraries reside at the core of every information-security

application. Different types of review software, typically software products used at IAEA Headquarters in

Vienna but also occasionally in nuclear facilities, need to contain some specific software modules in order

to verify digital signatures attached to data. Finally, enrolment tools are also required, which generate

private keys and certify their corresponding public counterparts using the IAEA’s internal Certification

Authority.

In 2014, the roll-out of the UIT has raised the security of IAEA instrument data authentication to a level

currently considered unlikely to be defeated, provided that the correct procedures are observed.

 Full paper:

A. Introduction

The IAEA applies various technical measures, referred to as nuclear safeguards, to verify the correctness

and completeness of declarations made by States with respect to nuclear material and activities. Safeguards

equipment enables IAEA inspectors to collect and verify safeguards data. Safeguards equipment requires

inherent security mechanisms in order to protect the integrity and the confidentiality of safeguards data.

However, in order to ensure usability and maximize data availability, a certain harmonization throughout a

number of disparate safeguards systems is required. This requirement represents a major challenge.

B. Scenario

Data security is an important feature of unattended and remote monitoring safeguards systems. Systems of

this type, which are installed for extended periods at facilities and are visited only periodically by

inspectors, transmit data over unsecured transmission paths between the components of different systems

and between these systems and IAEA Headquarters [1]. The protection of digital safeguards data is based

on several principles: a) signing of data in measurement devices using standard public/private-key-based

signature generation, b) storage of secret keys on certified, tamper-protected cryptographic devices, and c)

use of well-established cryptographic algorithms and protocols based on global standards and

internationally recognized cryptographic libraries. An internal security policy mandates the application of

these principles [2].

Figure 1: Typical deployment scenario for unattended safeguards instruments [3]

The UIT is a cryptographic token permanently connected to the measuring device, usually via the USB port.

It requires a set of complex hardware drivers and middleware components. Different types of review

software, typically software products used at IAEA headquarters in Vienna but occasionally also in nuclear

facilities, need to contain specific software modules in order to verify digital signatures attached to data.

C. The Smart Card HSM

The SmartCard-HSM [4] is a remotely manageable secure key store for RSA and ECC cryptographic keys

and is currently the only UIT in use by the IAEA. Unlike commonly known USB memory sticks that store

files, the SmartCard-HSM is a USB device that contains a secure micro-controller with protected memory

and a cryptographic engine. Cryptographic keys are generated, stored and used internally, never leaving the

secure enclosure of the device. The micro-controller embedded in a SmartCard-HSM is the same tamper-

resistant security controller that is used for banking cards, national ID cards or passports. It is specifically

designed to protect sensitive information from unauthorized disclosure using direct (e.g. brute-force) or

indirect (e.g. side-channel) attacks. The security of the micro-controller, the cryptographic library and the

operating system (although notably not the application running on it) is independently evaluated and

certified under the Common Criteria (CC) scheme at Evaluation Assurance Level EAL 5 “Semi-formally

Designed and Tested” (level 5 out of 7). Additional vulnerabilities evaluated at higher levels assume

attackers with sophisticated capabilities. This ensures that the private keys have a unique property, namely

that they exist only in the physically controllable device. This approach presents a major advantage over the

use of software keys, as these can be copied and misused without being noticed. The “Heartbleed” bug [5]

recently discovered in OpenSSL [6] demonstrates the risk of using cryptographic keys in software.

As well as cryptographic keys in a SmartCard-HSM being protected from disclosure, their use is also

controlled. The SmartCard-HSM requires an authentication code to be presented before a cryptographic

operation can be performed. The authentication code must be at least 48 bits long (up to a maximum of 128

bits). Commonly, a 6-digit PIN code is assigned as an authentication code. To prevent a brute force attack

on the authentication code through attempting to enter all possible combinations, the SmartCard-HSM

includes an error counter that limits the number of wrong entries. If the permitted number of wrong entries

is exhausted, then the authentication code is blocked, and keys are temporarily suspended.

When using the SmartCard-HSM in an instrument, secure storage of the authentication code presents a new

problem requiring resolution; the authentication code must be protected against unauthorized disclosure, as

an adversary might otherwise steal the SmartCard-HSM and make use of its keys. One possible method of

application is to have an operator enter the authentication code whenever the instrument is put into

operation. The code need only be entered once, after which cryptographic operations can be performed until

power is disconnected or the device is reset (by logging out). A second option is to change the

authentication code to a pairing code during installation of the SmartCard-HSM. In this case, the instrument

will generate a secure pairing code known only to the instrument, effectively binding the SmartCard-HSM

to the instrument. The pairing code must then also be held securely within the instrument. The pairing code

could be generated as random value, or derived from non-public information available in the instrument.

A third option is to require contact with a central authentication server whenever the authentication code

needs to be presented. A PKI built into the SmartCard-HSM will allow the server to identify the device and

to establish an authenticated and confidential communication channel with the device. Using this channel,

the authentication code is presented by the server and the device unlocked, enabling local cryptographic

operations.

D. Real-time and Integrated STream-Oriented Remote Monitoring

(RAINSTORM) and UIT

D.1. The sc-hsm-embedded Library

The generally recognized cross-platform application programming interface (API) for accessing smart card

readers is Personal Computer/Smart Card (PC/SC). The OSS PC/SC library OpenSC/pcsc-lite includes

support for the SmartCard-HSM token. While this library supports myriad features and is suitable for many

systems, the IAEA often fields resource-constrained embedded systems, where it may not be possible to use

OpenSC. For these systems, the Card Terminal API (CT-API), a lightweight API, is more suitable. As part

of the UIT effort, the IAEA commissioned CardContact to develop the sc-hsm-embedded library, which

includes a CT-API for the SmartCard-HSM token. The relevant source code is published on GitHub [7].

D.2. The sc-hsm-ultralite library

In many scenarios, the IAEA requires the UIT to perform only a private-key operation to digitally sign data.

In these scenarios, using cryptography libraries such as OpenSSL, cryptlib [8] or Crypto++ [9] might

represent overkill, as their function for creating a digital signature is simply hashing data and generating an

ASN.1 enclosure. For this reason, the IAEA remote monitoring (RM) programming team developed the sc-

hsm-ultralite library, a companion to the sc-hsm-embedded library. The sc-hsm-ultralite library uses a

clever trick to patch template signature files simply, thereby eliminating the need for a cryptography library

such as OpenSSL. More details can be found in [10].

E. Open Source

There are strong arguments in favour of using open source software in security products. Obvious bugs can

more easily be spotted if the source code is reviewed by various testers with different skill sets. Many

security product developers have made their source code publicly available [11]. Reliable and well-

established cryptographic libraries (which are often distributed under an open source license) reside at the

core of every information security application.

The wide range of applications envisaged for the UIT requires open-source based, mature and ready for use

smart card drivers and tools compatible with a range of operating systems. Any UIT implementation must

be compliant with the generic open-source CCID driver [12] as well as with the OpenSC [13] libraries

which implement the PKCS#11 API [14]. This is how the UIT is different from those cryptographic tokens

used previously for safeguards instruments. In terms of software (and hardware) sustainability, open-source

implies that software modules can be replaced, software may be re-used for other platforms, and that tokens

may be replaced by another product if no longer supported (second-source products have already been

selected and initially tested).

F. Applications

F.1. LMCV

The laser mapping for containment verification (LMCV) system uses a laser triangulation technique to

perform an accurate mapping of closure welds on containers. Once a container has been loaded with nuclear

material and its lid closed and welded, the closure weld is scanned using LMCV. The weld scan is used to

derive a unique signature for a specific container, which remains valid provided the weld is not modified.

An embedded system, running Windows 7 Embedded on a single-board PC, serves as the core of the

LMCV system. In this scenario, the UIT uses the cryptlib and OpenSC [13] OSS libraries. The LMCV also

includes an embedded HTTP RAINSTORM server which serves as the interface with the IAEA’s remote

monitoring data retrieval system.

F.2. OLEM

The On-Line Enrichment Monitor (OLEM) is a system designed to provide continuous enrichment

measurements at gaseous centrifuge enrichment plants. The OLEM design incorporates the latest IAEA

methods and approaches for physical and data security including the use of the UIT. Recently, a field trial

of OLEM prototype systems has been conducted — the OLEM design and measurement approach, along

with feedback from the field trial, will be presented in a separate paper at the IAEA Safeguards Symposium

2014 [15]. The OLEM software runs on a Technologic Systems TS-7800 embedded ARM single board

computer (SBC) running Debian Sarge Linux. The UIT implementation uses the sc-hsm-ultralite library. An

Apache HTTP server plus RAINSTORM PHP serves as the interface with the IAEA’s remote monitoring

data retrieval system. Although the TS-7800 has sufficient computing power to use cryptlib plus OpenSC,

one function of the OLEM was to explicitly prove new IAEA technologies such as sc-hsm-ultralite and

RAINSTORM [10] [15].

F.3. NGAM

The Next Generation ADAM Module (NGAM) is a data acquisition module which, similarly to the OLEM,

is permanently installed in nuclear facilities. It contains two ARM microprocessors running the SMX real-

time operating system. An ARM9 processor handles external communication, transferring data, state of

health, and hosting the HTTP interface. In this case, the UIT implementation uses a custom port of the sc-

hsm-ultralite library to the SMX operating system. An SMX embedded HTTP server serves as the interface

with the IAEA’s remote monitoring data retrieval system.

G. Enrolment

Finally, enrolment tools are also required to generate private keys and certify their corresponding public

counterparts using the IAEA’s internal Certification Authority (CA). This process is largely transparent to

the authorized technician who prepares UITs for use in the field. A script-based tool initializes the token

automatically, generates an individual PIN code, triggers key generation and, upon authentication by the

technician, requests certification of the token’s public key by the dedicated subordinate Certificate

Authority (SubCA). The IAEA tracks the ownership and location of UITs using the safeguards equipment

inventory management system (EQUIS).

Conclusions:

This paper discusses a cryptographic token, the UIT, which constitutes the core element of the overall

architecture for authenticating safeguards data. This architecture supports a number of key overarching

principles and is compliant with the IAEA’s information security policies and guidelines. An important

consideration is that the UIT must be implemented across a wide range of operating systems and hardware

architectures, which necessitates the use of OSS for all software-related parts. In 2014, the roll-out of the

UIT has raised the security of IAEA instrument data authentication to a level commensurate with all current

security policies and procedures.

References:

[1] IAEA, Safeguards Techniques and Equipment: 2011 Edition, ISBN 978-92-0-118910-3, http://www-

pub.iaea.org/books/iaeabooks/8695/Safeguards-Techniques-and-Equipment-2011-Edition

[2] IAEA SGTS, Information Security Requirements for the Development of IAEA Safeguards Equipment,

Policy and Guideline, Document No. SG-PL-11859, Version 1, 2013-01-16

[3] Naumann, Ingo; Wishard Bernard, Liguori Cesare: Data Security Risk Management for Nuclear

Safeguards – Getting Your Threat Model Right, International Nuclear Materials Management

Conference 2011

[4] CardContact, The SmartCard-HSM, product website, http://www.smartcard-hsm.com/

[5] Heartbleed, Wikipedia Page, http://en.wikipedia.org/wiki/Heartbleed

[6] The OpenSSL Project, Cryptography and SSL/TLS Toolkit, https://www.openssl.org/

[7] Light-Weight CT-API and PKCS\11 Library for Using the SmartCard-HSM in Embedded Systems,

https://github.com/sc-hsm-clone/sc-hsm-embedded

[8] Gutmann, Peter: cryptlib, Cryptographic Library, http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

[9] Wei Dai: Crypto++ Library, http://www.cryptopp.com/

[10] Brunhuber, Christoph; Morgan, Keith: The Evolution of RAINSTORM, Symposium on

International Nuclear Safeguards: Linking Strategy, Implementation and People, Vienna, Austria, 20 -

24 October 2014

[11] Anderson, Ross: Security Engineering, Second Edition, 2008, Wiley Publishing Inc., ISBN 978-0-

470-06852-6

[12] CCID Free Software Driver, https://pcsclite.alioth.debian.org/ccid.html

[13] OpenSC Tools and Libraries for Smart Cards, https://github.com/OpenSC/OpenSC/wiki

[14] PKCS11 #11: Cryptographic Token Interface Standard, http://www.emc.com/emc-plus/rsa-

labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

[15] Ely, James; Lebrun, Alain; Pochet, Thierry; Younkin, J.; Garner, James, March-Leuba, J.; Smith,

Eric: On-Line Enrichment Monitor (OLEM) - Supporting Safeguards at Enrichment Facilities,

Symposium on International Nuclear Safeguards: Linking Strategy, Implementation and People,

Vienna, Austria, 20 -24 October 2014

http://www-pub.iaea.org/books/iaeabooks/8695/Safeguards-Techniques-and-Equipment-2011-Edition
http://www-pub.iaea.org/books/iaeabooks/8695/Safeguards-Techniques-and-Equipment-2011-Edition
http://www.smartcard-hsm.com/
http://en.wikipedia.org/wiki/Heartbleed
https://www.openssl.org/
https://github.com/sc-hsm-clone/sc-hsm-embedded
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
http://www.cryptopp.com/
https://pcsclite.alioth.debian.org/ccid.html
https://github.com/OpenSC/OpenSC/wiki
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

